

Analyzing the Effectiveness of the Solow Model in the 21st Century

TROY R. SHEN

Journal of Secondary and Undergraduate Research

Published on November 1st, 2025

It has been nearly seventy years since the creation of the Solow-Swan model, which has been the basis of measuring long term economic growth in the economic field. We hoped to test the accuracy of the Solow model in modern times and to see what results we could get to further gain insight on growth in developing and developed countries. This paper evaluates the effectiveness of the Solow model by creating a value for elasticity of output with respect to capital from the US Solow model by using sensitivity analysis, and then creating Solow models for Germany, India and Japan using formulas created to estimate capital, labor, and technological growth. We found that under the right conditions, the Solow model can be effectively applied to predict economic growth yet fails to address many problems like corruption or government policies.

1 Introduction

Since the dawn of economic theory, economists have created and debated many methods of predicting economic growth. One such model, created by Robert Solow and Trevor Swan in 1956, would become the basis of modern neoclassical growth theory. By using four factors (capital, elasticity of output with respect to capital, labor, and technology), the Solow-Swan model predicts the total production of a country [1].

Capital has been a reliable basis for most models of growth, as it is a necessary factor in production. Capital can be split into public capital, which consists of infrastructure, electricity, and other public utilities, and private capital, which for the most part is private machines, databanks, etc. Labor is also vital in measuring growth. A growing population means more people to operate and create capital, stimulating growth. The efficiency of the workforce is also an important factor to note. Technological advances like the internet have drastically boosted our workforce's knowledge base and efficiency, and further technological developments like artificial intelligence can further boost our efficiency. The Solow model aims to combine these simple factors to predict future growth.

However, there are many limitations to this model. For example, the model assumes there is no specific government (which could implement policies) and no in-

ternational trade [2]. The model also fails to address world events which may change population growth, capital growth, and technological growth. The model is also rather vague in the ways of measuring capital and technological growth. Technology has drastically changed since then, and a series of economic recessions have changed the way we run our economy. The Solow model was an early attempt to measure long-run economic growth, so will this model still be a viable way of predicting economic growth?

In this paper, we test the validity of this model nearly seventy years after being first published. We first apply the Solow model to the US to calculate an elasticity of output with respect to capital, then compare the Solow models of Germany, India, and Japan with their respective GDPs to gauge the accuracy of the Solow model.

2 Methodology

The Solow model uses four main factors: capital (K), elasticity of output with respect to capital (α), labor (L), and technology (A). The Solow model equation is:

$$Y(t) = K(t)^\alpha [A(t)L(t)]^{1-\alpha} \quad (1)$$

Other than the assumptions made in the Solow model mentioned earlier, we make a few more key assumptions. The first is that when calculating formulas which best represent Capital, Labor, and Technology, we change the type

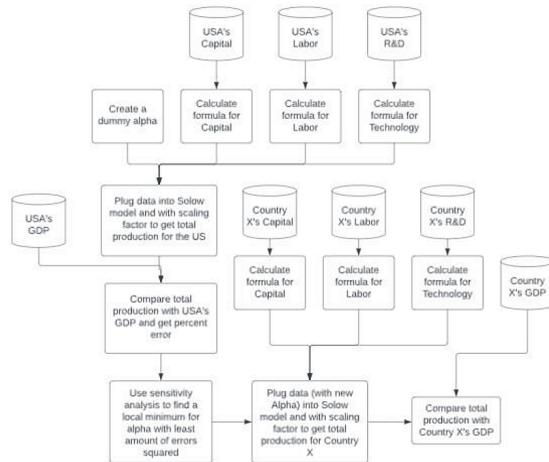


Figure 1: Flowchart for Calculating a Base Elasticity of Output with Respect to Capital (α) from the US and Future Comparisons with Other Countries.

of function (linear, exponential, polynomial, etc.) based on the plotted graph of actual data. We tried at first to model Technology and Labor under the constraints of the Solow model (labor and technology are exponential) [5], but our data did not work out very well. We also defaulted to a linear function for Capital's formula, as Capital depreciates over time. In addition, we also use a scaling constant to compare GDP and the total production calculated by the Solow model. Dimensional analysis does not seem to work here with international dollars by the IMF (will explain later) and people in comparison with GDP. We believe that using a scaling factor will solve this problem, as we are measuring the changes between our calculated Solow model production and GDP.

In our calculations, for capital we use IMF calculated Private Capital Stocks in international dollars and for technology we use Country X's research and development funding (R&D) in international dollars. IMF International dollars are a combination of multiple national currencies to better compare data between countries. The data we use in GDP is also in international dollars. We took data from 1995 to 2015 on the United States, Germany, India, and Japan to create formulas which predicted each factor after 1995.

Figures 2-4 demonstrate our method mentioned earlier of calculating formulas which predict factors for the US. For the most part (other than the cyclical nature of the graph), data collected about the United States created sensible formulas. However, this was not the case for all four countries.

Figure 5 shows a discrepancy with calculating a formula for German capital. Around 2003, German private capital stocks begin to decrease. Because Germany has had a decrease in investment (both public and private) since 2003

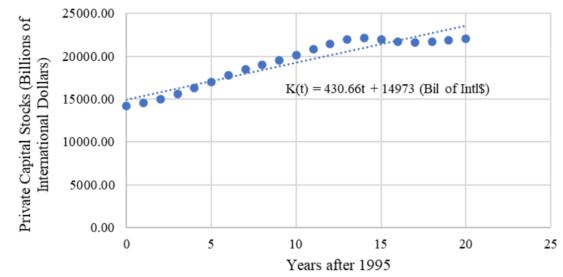


Figure 2: Graph used to Calculate Formula Predicting US Capital after 1995.

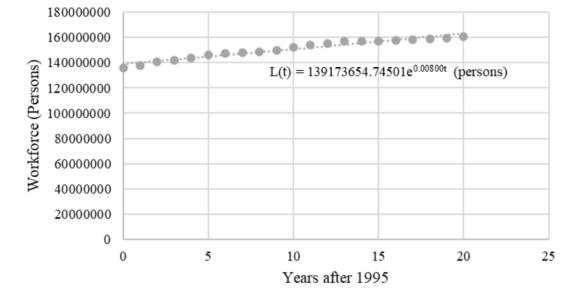


Figure 3: Graph used to Calculate Formula Predicting US Labor Force after 1995.

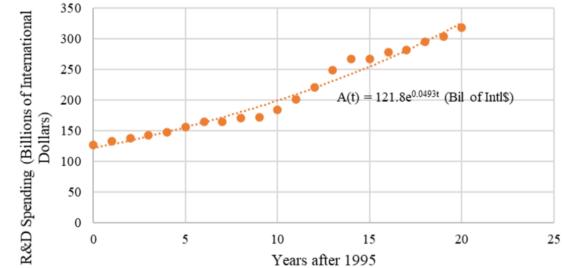


Figure 4: Graph used to Calculate Formula Predicting US Technological Development after 1995.

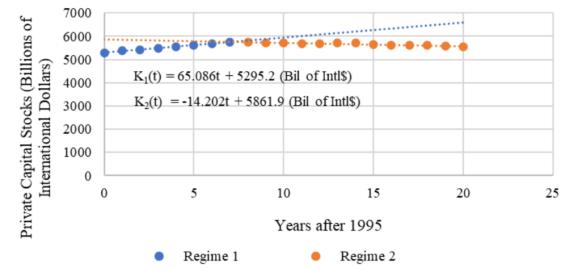


Figure 5: Graph used to Calculate Formula Predicting German Capital after 1995.

[6], it would not be accurate to limit our formula to once single function; instead, we created a piecewise function with different 'regime' changes to better predict German capital stocks. Since the 2000's, Germany has displayed

88 low and negative public fixed net capital formation ratios,
 89 meaning slowed economic growth [6] – which pertains to
 90 the Solow model.

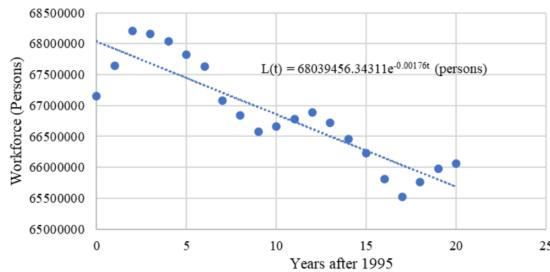


Figure 6: Graph used to Calculate Formula Predicting Japanese Labor Force after 1995.

91 Figure 6 also shows two additional problems: the first
 92 being a decreasing population, the second being unable to
 93 capture the cyclical nature of this data. Japan, similarly, to
 94 China, is undergoing a declining population – which is not
 95 so great for economic growth. Declining and aging popula-
 96 tions push a lot of the burden onto the already decreasing
 97 younger generations in paying for social welfare. Although
 98 the first problem is not an immediate one for the Solow
 99 model, the second casts some uncertainty of the accuracy
 100 of this formula. We are dictated by the Solow model to use
 101 an exponential function in capturing labor and technology.

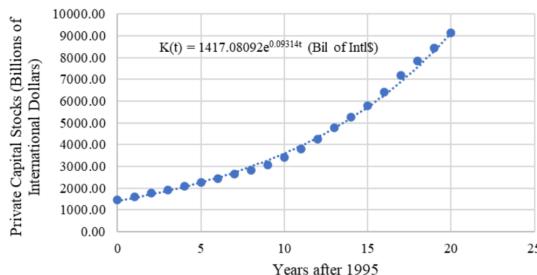


Figure 7: Graph used to Calculate Formula Predicting Indian Capital after 1995.

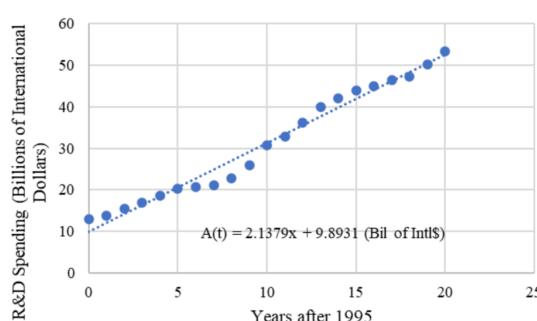


Figure 8: Graph used to Calculate Formula Predicting Indian Technology after 1995.

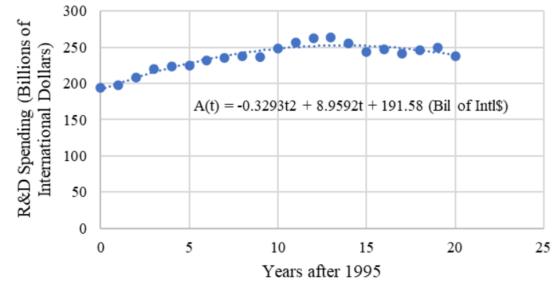


Figure 9: Graph used to Calculate Formula Predicting Japanese Technology after 1995.

102 Figures 7-9 show the rest of the discrepancies for creating
 103 formulas for capital, labor, and technology. In Figure 9,
 104 Japan sees a stagnation in technological investment. This
 105 is likely in part because of weak investments from private
 106 companies as they have no incentive to spend [4]. For the
 107 rest of the graphs, we used linear functions for capital and
 108 exponential functions for labor and technology.

3 Data

110 Data on individual countries' private capital stocks and
 111 GDP were found in the International Monetary Fund
 112 database.

113 Data on individual countries' labor force was found in
 114 the World Bank database.

115 Data on individual countries' research and development
 116 expenditures was found in the World Bank database. This
 117 data with the IMF data to calculate R&D spending in inter-
 118 national dollars.

4 Results

120 For the US, we have calculated using the Solow Model that
 121 their elasticity of output with respect to capital is around
 122 0.526 by using sensitivity analysis. Sensitivity analysis is
 123 done by plugging in numbers for alpha to minimize the sum
 124 of errors squared (to summarize it is pretty much guess and
 125 check). To verify our data, we graph US GDP alongside
 126 $Y(t)$ squared in figure 7.

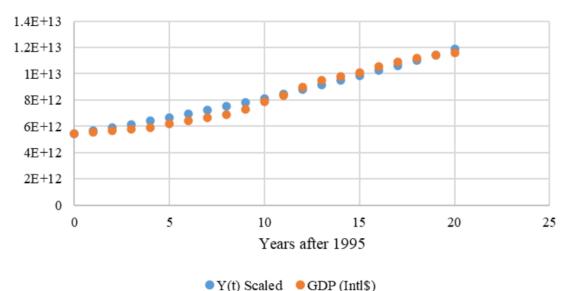


Figure 10: Graph Calculating US Total Production using Solow Model alongside US GDP in International Dollars.

Y(t)	Y(t) Scaled	GDP (Intl\$)	Error	Error ²	% Error
1.11E+07	5.43E+12	5.43E+12	0.00E+00	0.00E+00	0.0%
1.16E+07	5.66E+12	5.53E+12	1.31E+11	1.73E+22	2.4%
1.21E+07	5.91E+12	5.68E+12	2.29E+11	5.22E+22	4.0%
1.26E+07	6.15E+12	5.79E+12	3.62E+11	1.31E+23	6.3%
1.31E+07	6.41E+12	5.93E+12	4.83E+11	2.33E+23	8.1%
1.36E+07	6.68E+12	6.21E+12	4.62E+11	2.13E+23	7.4%
1.42E+07	6.95E+12	6.43E+12	5.17E+11	2.67E+23	8.0%
1.48E+07	7.23E+12	6.64E+12	5.92E+11	3.50E+23	8.9%
1.53E+07	7.53E+12	6.87E+12	6.78E+11	3.95E+23	9.1%
1.60E+07	7.83E+12	7.30E+12	5.32E+11	2.83E+23	7.3%
1.66E+07	8.14E+12	7.85E+12	2.84E+11	8.09E+22	3.6%
1.73E+07	8.46E+12	8.37E+12	9.26E+10	8.57E+21	1.1%
1.80E+07	8.79E+12	8.97E+12	-1.78E+11	3.15E+22	-2.0%
1.87E+07	9.14E+12	9.48E+12	-3.46E+11	1.19E+23	-3.6%
1.94E+07	9.49E+12	9.79E+12	-2.98E+11	8.88E+22	-3.0%
2.01E+07	9.87E+12	1.01E+13	-2.17E+11	4.72E+22	-2.2%
2.09E+07	1.02E+13	1.05E+13	-2.89E+11	8.34E+22	-2.7%
2.17E+07	1.06E+13	1.09E+13	-2.85E+11	8.12E+22	-2.7%
2.25E+07	1.10E+13	1.12E+13	-1.37E+11	1.89E+22	-1.2%
2.34E+07	1.14E+13	1.14E+13	6.71E+10	4.50E+19	0.1%
2.42E+07	1.19E+13	1.16E+13	3.02E+11	9.10E+22	2.6%
Alpha	0.526	Scaling Factor	4.90E+05		
Sum Errors Squared	2.59E+24	Average Error	2.5%		

Table 1: Calculated US Elasticity of Output with Respect to Capital (α) using Sensitivity Analysis.

127 Our calculated US total production and GDP in international dollars align well with each other. With our new
128 alpha of 0.526, we then plugged in this alpha with capital, labor and technology for Germany. Here were our results:
129
130

Y(t)	Y(t) Scaled	GDP (Intl\$)	Error	Error ²	% Error
7.74E+07	2.78E+12	2.78E+12	0.00E+00	0.00E+00	0.0%
7.96E+07	2.86E+12	2.81E+12	5.40E+10	2.92E+21	1.9%
8.18E+07	2.94E+12	2.86E+12	8.02E+10	6.44E+21	2.8%
8.41E+07	3.02E+12	2.91E+12	1.11E+11	1.23E+22	3.8%
8.63E+07	3.11E+12	2.97E+12	1.40E+11	1.97E+22	4.7%
8.87E+07	3.19E+12	3.06E+12	1.37E+11	1.71E+22	4.5%
9.12E+07	3.28E+12	3.12E+12	1.62E+11	2.61E+22	5.2%
9.36E+07	3.37E+12	3.19E+12	1.68E+11	2.64E+22	5.3%
9.50E+07	3.42E+12	3.09E+12	3.23E+11	1.04E+23	10.4%
9.63E+07	3.46E+12	3.11E+12	3.45E+11	1.19E+23	11.0%
9.74E+07	3.51E+12	3.14E+12	9.87E+11	9.87E+22	9.9%
9.88E+07	3.55E+12	3.27E+12	2.87E+11	8.21E+22	8.8%
1.00E+08	3.59E+12	3.27E+12	2.42E+11	5.87E+22	7.4%
1.01E+08	3.40E+12	3.40E+12	2.48E+11	6.13E+22	7.5%
1.03E+08	3.62E+12	3.21E+12	4.10E+11	1.68E+23	12.8%
1.04E+08	3.69E+12	3.26E+12	4.27E+11	1.82E+23	13.1%
1.05E+08	3.79E+12	3.45E+12	3.43E+11	1.05E+23	9.9%
1.07E+08	3.87E+12	3.47E+12	4.00E+11	1.60E+23	11.5%
1.08E+08	3.89E+12	3.48E+12	3.78E+11	1.43E+23	10.9%
1.09E+08	3.94E+12	3.56E+12	3.69E+11	1.37E+23	10.2%
Alpha	0.526	Scaling Factor	1.72E+24		
Sum Errors Squared	1.72E+24	Average Error	7.8%		

Table 2: Calculated German Elasticity of Output with Respect to Capital (with $\alpha=0.526$) using Sensitivity Analysis alongside German GDP.

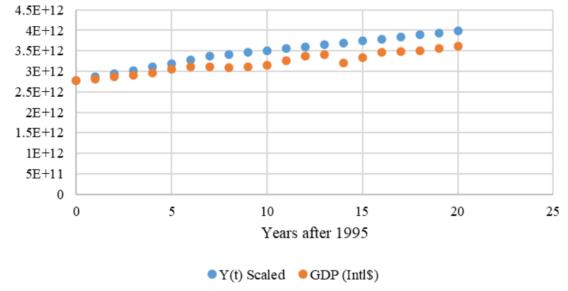


Figure 11: Graph Calculating German Total Production (with $\alpha=0.526$) using Solow Model alongside German GDP in International Dollars.

131 For the most part, our data seems to work well here.
132 There is a noticeable gap after 2002, but that aligns with
133 the lack of investment that occurred around 2003. But other-
134 wise, Germany aligns quite well with the predicted Solow
135 Model graph - no problems here. However, we can't say the
136 same for India and Japan.

Y(t)	Y(t) Scaled	GDP (Intl\$)	Error	Error ²	% Error
2.48E+07	2.02E+12	2.02E+12	0.00E+00	0.00E+00	0.0%
3.02E+07	2.45E+12	2.16E+12	2.83E+11	8.03E+22	13.1%
3.60E+07	2.93E+12	2.16E+12	6.67E+11	4.45E+23	29.5%
4.26E+07	3.47E+12	2.39E+12	1.06E+12	1.14E+24	44.7%
5.00E+07	4.07E+12	2.56E+12	1.49E+12	2.25E+24	58.4%
5.83E+07	4.74E+12	2.67E+12	2.07E+12	4.28E+24	77.4%
6.77E+07	5.50E+12	2.81E+12	2.69E+12	7.24E+24	95.7%
7.61E+07	6.18E+12	2.92E+12	3.26E+12	1.18E+25	112.1%
8.99E+07	7.31E+12	3.16E+12	4.16E+12	1.73E+25	131.4%
1.03E+08	8.40E+12	3.42E+12	4.97E+12	2.47E+25	145.3%
1.18E+08	9.64E+12	3.43E+12	5.87E+12	3.45E+25	165.9%
1.35E+08	1.09E+13	4.09E+12	6.89E+12	4.75E+25	168.9%
1.49E+08	1.19E+13	4.63E+12	7.58E+12	5.75E+25	163.6%
1.75E+08	1.40E+13	5.42E+12	8.61E+12	7.41E+25	158.9%
1.91E+08	1.62E+13	5.05E+12	1.12E+13	1.24E+26	221.3%
2.26E+08	1.83E+13	5.52E+12	1.27E+13	1.63E+26	230.4%
2.56E+08	2.08E+13	5.95E+12	1.49E+13	2.21E+26	250.1%
2.89E+08	2.35E+13	6.41E+12	1.71E+13	2.93E+26	266.0%
3.28E+08	2.67E+13	6.76E+12	2.00E+13	4.00E+26	296.0%
3.70E+08	3.00E+13	7.16E+12	2.29E+13	5.27E+26	320.0%
4.18E+08	3.40E+13	7.69E+12	2.63E+13	6.92E+26	342.0%
Alpha	0.526	Scaling Factor	8.13E+04		
Sum Errors Squared	2.73E+27	Average Error	160.1%		

Table 3: Calculated Indian Elasticity of Output with Respect to Capital (with $\alpha=0.526$) using Sensitivity Analysis alongside Indian GDP.

137 The immediate problem we notice is that the percentage
138 error is absurdly high. It also seems to be increasing as
139 each year passes. To better understand what is going on,
140 we must look at this problem graphically.

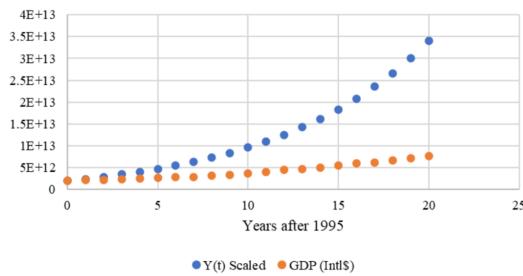


Figure 12: Graph Calculated Indian Total Production (with $\alpha=0.526$) using Solow Model alongside Indian GDP in International Dollars.

141 This graph shows us the root of the problem: the Solow
 142 Model has drastically overpredicted Indian growth. This
 143 problem can be further shown when we set alpha to one
 144 instead of 0.526.

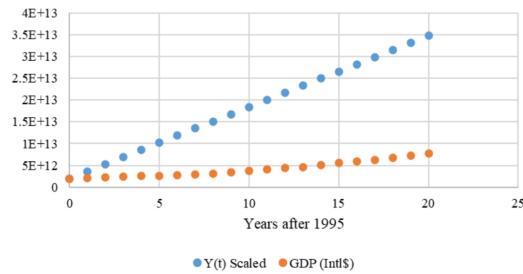


Figure 13: Graph Calculated Indian Total Production (with $\alpha=1$) using Solow Model alongside Indian GDP in International Dollars.

145 When alpha equals 1, an increase in capital is equal to
 146 an increase in output, leaving no more room for any more
 147 growth, thus resulting in a straight increase in GDP. This
 148 demonstrates that the Solow model has some faults, as it
 149 fails to account that actual growth may be far less than pre-
 150 dicted, thus leading to a failure in applying Indian data
 151 to the Solow Model. This gap may reflect India's myri-
 152 ad of corruption and institutional problems. Notable prob-
 153 lems include a massive rural economy, high unemploy-
 154 ment rates, and labor laws, incentivizing employers to hire less
 155 if not any workers [3]. What about Japan's situation? Let
 156 us now look at Japanese data below:

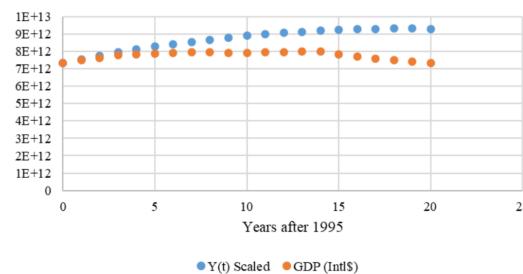


Figure 14: Graph Calculated Japanese Total Production (with $\alpha=0.526$) using Solow Model alongside Japanese GDP in International Dollars.

Y(t)	Y(t) Scaled	GDP (Intl\$)	Error	Error ²	% Error
1.30E+07	7.35E+12	7.35E+12	0.00E+00	0.00E+00	0.0%
1.34E+07	7.56E+12	7.49E+12	7.01E+10	4.92E+21	0.9%
1.37E+07	7.75E+12	7.63E+12	1.18E+11	1.40E+22	1.5%
1.40E+07	7.93E+12	7.78E+12	1.54E+11	2.36E+22	2.0%
1.44E+07	8.10E+12	7.85E+12	2.58E+11	6.64E+22	3.3%
1.46E+07	8.26E+12	7.88E+12	3.85E+11	1.49E+23	4.9%
1.49E+07	8.41E+12	7.99E+12	4.81E+11	2.31E+23	6.1%
1.52E+07	8.57E+12	7.93E+12	6.14E+11	3.77E+23	7.7%
1.54E+07	8.67E+12	7.93E+12	7.39E+11	5.46E+23	9.3%
1.56E+07	8.79E+12	7.93E+12	8.56E+11	7.33E+23	10.9%
1.57E+07	8.91E+12	7.94E+12	9.73E+11	9.48E+23	12.2%
1.60E+07	9.08E+12	7.94E+12	1.14E+12	1.30E+24	14.3%
1.62E+07	9.13E+12	7.99E+12	1.13E+12	1.29E+24	14.2%
1.63E+07	9.19E+12	7.98E+12	1.21E+12	1.46E+24	15.1%
1.64E+07	9.24E+12	7.70E+12	1.57E+12	2.46E+24	20.4%
1.65E+07	9.27E+12	7.04E+12	2.23E+12	4.96E+24	31.8%
1.66E+07	9.27E+12	7.50E+12	1.78E+12	3.18E+24	23.7%
1.64E+07	9.29E+12	7.41E+12	1.89E+12	3.88E+24	25.6%
Alpha	0.526	Scaling Factor	5.65E+04		
Sum Errors Squared	2.61E+25	Average Error	12.0%		

Table 4: Calculated Japanese Elasticity of Output with Respect to Capital (with $\alpha=0.526$) using Sensitivity Analysis alongside Japanese GDP.

157 The data seems at first pretty good, other than the high
 158 but acceptable average percent error and an increasing per-
 159 cent error every year. However, if we look at our Solow
 160 model graphically, we notice an ever-widening gap. This is
 161 likely because of two main reasons. First (and more obvi-
 162 ous) is their decreasing and inconsistent labor growth. Sec-
 163 ondly, this may stem from a lack of spending from Japanese
 164 firms and weak business metabolism [4]. This once again
 165 shows that the Solow model is not entirely accurate at pre-
 166 dicting growth.

5 Conclusion

167 We can conclude that under the right circumstances, the
 168 Solow model can be effectively applied to other countries;
 169 a great example of this is applying the Solow Model to the
 170 US. Germany does have room for improvement but other-
 171 wise also works. Further/already completed research into
 172 analyzing what factors are needed for an accurate Solow
 173 model prediction would help a lot with understanding eco-
 174 nomic growth.

175 However, the Solow model (or at least the application
 176 of Sensitivity Analysis) has many drawbacks. First, the
 177 Solow model fails to account for government, corruption,
 178 and institutional problems. For example, although India
 179 has a massive growing population, it lacks many advances
 180 in research, education, and infrastructure across the na-
 181 tion. Strict labor laws and corruption also hinder growth.
 182 In Japan's case, falling population numbers and a lack of
 183 spending from the private sector cause an increasing gap
 184 between our Solow model and actual numbers. Perhaps a
 185 better technology index could be used to better apply the
 186 Solow model.

187 The second drawback is the failure to capture the cyclical
 188 nature of economic growth. If we look back at the tables,
 189 notice how the errors cycle between positive and negative.

191 Although the Solow model does a good job of capturing
192 long term economic growth, it fails to track this cyclical
193 nature. In addition, our basic formulas to predict capital,
194 labor, and technology also occasionally missed capturing
195 cyclical nature (see figure 6). Further/completed research
196 and better models can be developed on top of the Solow
197 model to address these issues.

6 Further Implications

199 Firstly, it is important to note that Sensitivity Analysis is
200 not the best way to apply the Solow model mathematically;
201 there are likely better ways to apply the Solow model using
202 our data.

203 Additionally, as mentioned earlier, a better technology
204 index would help in applying the Solow Model.
205 Since 1995, the dawn on the internet and increased computer/mobile
206 phone usage have changed our world. Usage of AI may also be a key factor in measuring technological
207 development in the 21st century.

208 Instead of looking at how accurate our Solow model is,
209 it may actually be better to look analyze why the Solow
210 model overpredicts growth. For India, although GDP is
211 increasing, the Solow model shows that it might not be on
212 the right track – if we apply this method to more countries,
213 this may help us better check the growth and stability of
214 developing countries.

References

- 216 [1] Caroline Banton. What is the neoclassical growth theory, and
217 what does it predict?, November 2020. Accessed 21 November 2020.
- 218 [2] Paulo Barelli and Samuel de Abreu Pessôa. Inada conditions
219 imply that production function must be asymptotically cobb–
220 douglas. *Economics Letters*, 81(3):361–363, 2003.
- 221 [3] Jayant Krishna. Labor distortions could derail india's eco-
222 nomic resurgence, June 2020.
- 223 [4] Yohei Matsuo and Daisuke Maruyama. Weak capital invest-
224 ment saps japan's economic growth, September 2022.
- 225 [5] Robert M. Solow. A contribution to the theory of economic
226 growth. *The Quarterly Journal of Economics*, 70(1):65–94,
227 1956.
- 228 [6] Guntram B. Wolff and Alexander Roth. Understanding (the
229 lack of) german public investment, June 2018.